OXIDATION OF AMINO ACID. PART V^{*}. A NOVEL SYNTHESIS OF N⁶-ACETYL-N⁶-HYDROXYLYSINE FROM LYSINE

> Maria J. Milewska, Andrzej Chimiak Department of Organic Chemistry Technical University of Gdansk 80-952 Gdansk, POLAND

<u>Abstract</u>: N^6 -Acetyl- N^6 -L-hydroxylysine was synthesized from L-lysine by oxidation of the amino group in the N^2 -benzyloxycarbonyl-L-lysine tert-butyl ester with benzoyl peroxide and subsequent acetylation.

Nature has taken advantage of the ω -amino group of ornithine and lysine to construct secondary hydroxamic acid residues in siderophores². However, ω -N-hydroxylysine, found in aerobactin³, mycobactines⁴ and exochelins⁵, the key to the synthesis of most of the hydroxamatecontaining siderophores, has received very little synthetic attention. Nielands⁶ was the first to prepare the noncrystalline dihydrochloride and the crystalline mono-2-nitro-1,3-indandione salts of N⁶-hydroxylysine. Attempts to synthesize N-hydroxylysine through the N-oxide were unsuccessful⁷. Lately, N⁶-acetyl-N⁶-hydroxylysine was obtained by alkylation of the hydroxamate with alcohol in the presence of triphenylphosphine/diethyl azodicarboxylate (DEAD)⁸.

Continuing our research on the oxidation of the amino acid amino group⁹, in our previous work¹ we reported the optimum conditions of the oxidation of the amino group in ω -monoamino acid esters with benzoyl peroxide, under conditions similar to those described by Zinner¹⁰ for the oxidation of primary amines.

Now we present the synthesis of the N^{6} -acetyl- N^{6} -hydroxylysine derivative by oxidation with benzoyl peroxide. N^{2} -Benzyloxycarbonyl-L-lysine¹¹ (1 eqv.) was treated with tert-butyl acetate (13.5 ml) in the presence of perchloric acid (1.1 eqv.) giving the ester <u>1</u> (yield 58%)¹².

* for part IV see¹

Ester <u>1</u> (1 eqv.) in CH_2CI_2 (5 ml) was oxidized with benzoyl peroxide <u>2</u> (1 eqv.) in the presence of sodium carbonate (5 eqv.). The products were not isolated but acetylated in situ with acetyl chloride under Schotten-Baumann conditions. The separation of amide <u>4</u> and the hydroxamic acid derivative <u>3</u> was carried out applying chromatography on silica gel (Merck <200 mesh; benzene as eluent). The yield of product <u>3</u> was 58% and the undesired amide <u>4</u> - $27\%^{13}$.

The ester 3 (1 eqv.) was easily transformed into N^{6} -acetyl- N^{2} -benzoxycarbonyl- N^{6} -hydroxylysine tert-butyl ester with 10% ammonia in methanol (3 ml) (yield 90%)¹⁴. Each of the other two protective groups i.e. the tert-butyl ester and the benzyloxycarbonyl group may selectively be removed applying acidolysis with trifluoroacetic acid or hydrogenolysis with H₂ in the presence of Pd/C¹⁵, giving useful synthons for siderophore synthesis.

 N^{6} -Acetyl- N^{6} -L-hydroxylysine 5^{16} was obtained as the result of subsequent acidolysis with trifluoroacetic acid (20 min., ambient temp.) and hydrogenolysis (5% Pd/C, 20 min., in ethanol). Product 5 was purified with Zerolit 225 [H⁺], 100-200 mesh.

Acetyl-N-hydroxyornithine was synthesized by the same route. The full results will be published shortly.

<u>Acknowledgements</u>: This work was supported by grants CPBR 3.13.6 and CPBP 01.13.2.6.

References and Notes:

1. M.J. Milewska, A. Chimiak, Chimia, in press.

- J.B. Neilands, in "Inorganic Biochemistry"; G. Eichhorm ed., Elsevier, New York, 1973, p. 167; A. Chimiak, Postępy Biochemii, <u>30</u>, 435 (1984); R.J. Bergeron, Chem. Rev., <u>84</u>, 587 (1984).
- 3. F. Gibson, D.I. Magrath, Biochim. Biophys. Acta, <u>192</u>, 175 (1969).
- 4. G.A. Snow, Bacteriol. Rev., <u>34</u>, 99 (1970).
- L.P. Macham, C. Ratledge, J.C. Norton, Infect. Immun., <u>12</u>, 1242 (1975); L.P. Macham, C. Ratledge, J. Gen. Microbiol., <u>89</u>, 379 (1975).
- 6. S. Rogers, J.B. Neilands, Biochemistry, 2, 6 (1963).
- 7. D.St.C. Brown, R.F.C. Wade, Aust. J. Chem., 25, 2155 (1972).
- 8. P.J. Maurer, M.J. Miller, J. Am. Chem. Soc., <u>104</u>, 3096 (1982).
- M.J. Milewska, T. Kolasa, A. Chimiak, Pol. J. Chem., <u>55</u>, 2215 (1981).
- 10. M. Psiorz, G. Zinner, Synthesis, 1984, 217.
- 11. B. Beras, L. Zervas, J. Am. Chem. Soc., <u>83</u>, 719 (1961).
- 12. <u>Compd. $1 \times CH_3 C_6 H_4 SO_3 H$ </u> (white crystals): mp. 179-81^o from ethyl acetate/ether; calc. for $C_{25}H_{36}N_2O_7S$ C 59.04, H 7.13, N 5.51%; found C 59.21, H 7.22, N 5.79%; $[\propto]_D^{20} = -4^o$ (c 3, CH_3OH); ¹H-NMR (CDCl₃): 1.3-1.9 (m, 6H, $-CH_2-$); 1.35 (s, 9H, $t-C_4H_9$); 2.9 (m, 2H, $-CH_2\bar{N}H_3$); 4.05 (m, 1H, >CHNH-); 5.0 (s, 2H, $-CH_2C_6H_5$); 5.7 (d, 1H, -NH-); 7.2 (s, 5H, C_6H_5-); 7.9 (m, 3H, $\bar{N}H_3-$).
- 13. <u>Compd. 3</u> (oil): calc. for $C_{27}H_{34}N_2O_7$ C 65.04, H 6.87, N 5.62%; found C 64.91, H 7.06, N 5.32%; $[\propto]_D^{20}=+4^{\circ}$ (c 2.7 CHCl₃); R_f (S1) 0.5; MS.EI m/e (%): 91 (98) $[C_7H_7]$, 105 (100) $[COC_6H_5]$, 204 (71) [Ac/OH/Lys], 320 (18.7) [M-(t- $C_4H_9+CO_2C_6H_5$) and M-(CH₃CO+CO₂C₇H₇)], 442 (13) [M- C_4H_8]; ¹H-NMR (CCl₄): 1.1-1.8 (m, 6H, -CH₂-); 1.4 (s, 9H, t- C_4H_9); 1.9 (s, 3H, CH₃CO-); 3.7 (t, 2H, -CH₂N<); 4-4.25 (m, 1H, >C<u>H</u>NH-); 5 (s, 2H, -C<u>H</u>₂C₆H₅), 5.5 (d, 1H, -NH-); 7.25 (s, 5H, $C_6H_5CH_2^{-}$); 7.25-7.7 (m, 3H, C₆H₅CO-); 7.9-8.2 (m, 2H, C₆H₅CO-);

<u>Compd. 4</u> (oil): calc. for $C_{25}H_{32}N_2O_5$ C 68.16, H 7.32, N 6.36%; found C 68.07, H 7.43, N 6.26%; R_f (S1) 0.3; ¹H-NMR (CDC1₃): 1.2-1.9 (m, 6H, -CH₂-); 1.4 (s, 9H, t-C₄H₉-); 3.4 (q, 2H, -C<u>H</u>₂NH-); 4-4.4 (m, 1H, -C<u>H</u>NH-); 5.15 (s, 2H, -C<u>H</u>₂C₆H₅); 5.53 (d, 1H, -NH-); 6.6 (m, 1H, -NH-); 7.25 (s, 5H, C₆<u>H</u>₅CH₂-); 7.2-7.55 (m, 3H, C₆H₅CO-); 7.7-7.9 (m, 2H, C₆H₅CO-).

- 14. $\frac{N^{6}-Acety1-N^{2}-benzy1oxycarbony1-N^{6}-L-hydroxy1ysine tert-buty1 ester}{(oil): calc. for C_{20}H_{30}N_{2}O_{6} C 60.89, H 7.66, N 7.10%; found C 60.71, H 7.76, N 7.05%; <math>[\infty]_{D}^{20}=+10^{\circ}$ (c 2.4 CHCl₃); R_{f} (S1) 0.2; ¹H-NMR (CDCl₃): 1.2-1.9 (m, 6H, -CH₂-); 1.4 (s, 9H, t-C₄H₉-); 2 (s, 3H, CH₃CO-); 3.5 (t, 2H, -CH₂N<); 4-4.35 (m, 1H, >CHNH-); 5.06 (s, 2H, -CH₂C₆H₅); 5.56 (d, 1H, -NH-); 7.33 (s, 5H, C₆H₅-);
- 15. $\frac{N^{6}-Acety1-N^{2}-benzy1oxycarbony1-N^{6}-L-hydroxy1ysine}{calc. for C_{16}H_{22}N_{2}O_{6} N 8.28\%; found N 8.35\%; R_{f} (S2) 0.64; ¹H-NMR (CDC1_{3}): 1.1-2 (m, 6H, -CH_{2}-); 2.03 (s, 3H, CH_{3}CO-); 3.5 (m, 2H, -CH_{2}N<); 4.23 (m, 1H, >CHNH-); 5.0 (s, 2H, -CH_{2}C_{6}H_{5}); 5.95 (m, 1H, -NH-); 7.2 (s, 6H, C_{6}H_{5}-, >NOH);$

 $\frac{N^{6}-Acetyl-N^{6}-L-hydroxylysine tert-butyl ester}{C_{12}H_{24}N_{2}O_{4}} N 10.76\%; found N 11.29\%; R_{f} (S2) 0.56; ¹H-NMR (CDCl_{3}): 1.3-1.9 (m, 6H, -CH_{2}-); 1.4 (s, 9H, t-C_{4}H_{9}-); 2.1 (s, 3H, CH_{3}CO-); 3.6 (m, 3H, >CHNH-, CH_{2}N<); 6.35 (m, 3H, -OH, NH_{2});$

16. $\frac{N^6-Acety1-N^6-L-hydroxylysine}{5}$ (white crystals): mp. 209-10°C from ethanol aq.; calc. for $C_8H_{16}N_2O_4$ C 47.05, H 7.90, N 13.72%; found C 46.88, H 8.00, N 13.75%; $[\infty]_D^{20}=+2^\circ$ (c 5.6, H₂O); R_f (S2) 0.31; ¹H-NMR (D₂O): 1.2-2 (br m, 6H, -CH₂-); 2 (s, 3H, CH₃CO-); 3.6 (m, 3H, -CH₂N<, >CHNH₂). Lit. data⁸ for N⁶-acety1-N⁶-DL-hydroxylysine: mp. 236-7°C, ¹H-NMR (D₂O): 1.1-2.1 (br m, 6H); 2.0 (s, 3H); 3.5 (m, 3H). S1 - benzene; ethyl acetate; ethanol / 8:2:0.5 S2 - n-butanol; water; acetic acid / 4:1:1

(Received in UK 3 March 1987)